Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

5'-Allyl-2'-benzoyloxy-3'-methoxy-4nitroazobenzene

Samil Işık, ${ }^{\text {a* }}$ Sema Öztürk, ${ }^{\text {b }}$ Hoong-Kun Fun, ${ }^{\text {c }}$ Erbil Agar ${ }^{\text {d }}$ and Selami Sassmaz ${ }^{\text {d }}$

Abstract

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, ${ }^{\mathbf{b}}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, Kayseri-38039, Turkey, ${ }^{\text {c } X \text {-ray Crystallography Unit, }}$ School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{d}}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey Correspondence e-mail: samili@samsun.omu.edu.tr

Received 24 May 1999
Accepted 29 September 1999
The structure of the title compound, 4-allyl-2-methoxy-6-[(4nitrophenyl)diazenyl]phenyl benzoate, $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$, displays the characteristic features of azobenzene derivatives. The azobenzene moiety of the molecule has a trans configuration and in this moiety, average $\mathrm{C}-\mathrm{N}$ and $\mathrm{N}=\mathrm{N}$ bond lengths are 1.441 (3) and 1.241 (3) \AA, respectively.

Comment

The crystal and molecular structures of the title compound, (I), were investigated in order to determine the conformation, crystal packing and also to confirm the stereochemistry. In the molecule, bond lengths and angles are very similar to the structures of azo compounds studied previously (Issık et al., 1997; Işık, Aygün, Kocaokutgen, Tahir et al., 1998; Işık, Aygün, Kocaokutgen \& Tahir, 1998).

(I)

The numbering scheme and a displacement ellipsoid plot of (I) are shown in Fig. 1. In the azo frame, the average $\mathrm{C}-\mathrm{N}$ bond length is 1.441 (3) \AA, indicating the single-bond character. The $\mathrm{C}-\mathrm{NO}_{2}$ bond length is 1.479 (4) \AA, which is similar to the observed values in the literature (Zhu et al., 1996; Zhang et al., 1998). The $\mathrm{N} 2=\mathrm{N} 3$ bond length of 1.241 (3) \AA is typical for a double bond. The angles $\mathrm{C} 4-\mathrm{N} 2-\mathrm{N} 3$ and $\mathrm{N} 2-$ N3-C7 are 114.0 (2) and 113.7 (2) ${ }^{\circ}$, respectively. The torsion angles about the $\mathrm{C}-\mathrm{N}$ bond $[\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3=178.9$ (2) and $\left.\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5=-1.9(4)^{\circ}\right]$ are comparable with trans azo compounds. The three phenyl rings are planar within

Figure 1
The structure of (I) showing 50% probability displacement ellipsoids and atom-numbering scheme.
experimental error and the largest deviation of -0.010 (2) \AA is at the C 18 atom of the $\mathrm{C} 14-\mathrm{C} 19$ ring. While the twist angle of the nitro group relative to the phenyl ring is $3.7(1)^{\circ}$, the C1-C6 and C7-C12 rings in the azobenzene frame are twisted by 1.83 (2) and $1.68(2)^{\circ}$ out of the azo group plane, respectively. These results show that the azo group moiety is almost planar. The C7-C12 ring and the other groups adjacent to the C7-C12 ring, except the methoxy group, are not coplanar. Also, dihedral angles between the C14-C19 ring and the C1C6, and C7-C12 rings are 97.7 (1) and 96.2 (1) ${ }^{\circ}$, respectively.

Displacement parameters of atoms C20, C21 and C22 of the allyl group are larger than for other atoms. This behaviour may be due to considerable freedom of movement of the group in the crystal. Also, this accounts for the apparent shortening of the C21-C22 bond length [1.245 (5) Å].

Experimental

5'-Allyl-2'-hydroxy-3'-methoxy-4-nitroazobenzene ($1 \mathrm{~g}, 3.19 \mathrm{mmol}$) was dissolved in aqueous NaOH solution $(1 M, 100 \mathrm{ml})$ by heating. After cooling the solution, benzoyl chloride was added, and the mixture was refluxed for 1 h . After cooling, a precipitate was obtained when $\mathrm{Na}_{2} \mathrm{O}_{3}(1 \mathrm{~g}, 9.43 \mathrm{mmol})$ was added. The precipitate was washed with pure water, filtered and dried. Diffraction-quality crystals were obtained by recrystallization from ethyl acetate (m.p. $428-434 \mathrm{~K}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.5-7.0$ (m, aromatic), 6.2-5.8 (m, $-\mathrm{CH}=)$, 5.4-5.1 $\left(\mathrm{m},=\mathrm{CH}_{2}\right)$, $3.9\left(s,-\mathrm{CH}_{3}\right), 3.6-3.4\left(s,-\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170(\mathrm{C}=\mathrm{O}), 145-120$ (aromatic), 140-130 $(-\mathrm{CH}=), 116-112\left(=\mathrm{CH}_{2}\right), 54.3\left(-\mathrm{OCH}_{3}\right), 40-10\left(-\mathrm{CH}_{2}\right)$; IR $\left(\mathrm{cm}^{-1}\right)$: 3080-2800 ($\left.\mathrm{CH}_{2}, \mathrm{CH}\right), 1635$ (allyl, $\left.\mathrm{C}=\mathrm{C}\right), 1450-1400$ $(\mathrm{N}=\mathrm{N}), 1600-1450\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 1385\left(\mathrm{OCH}_{3}\right), 1740(\mathrm{C}=\mathrm{O}) ;$ UV [$\lambda(\mathrm{nm})$, $\left.\varepsilon\left(\mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 271.1$ (6268.1), 241.4 (9664.8), 206.2 (1229.05); analysis calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$ (\%): C 68.18, H 4.55, N 10.07; found (\%): C 68.19, H 4.62, N 10.02.

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{O} 1-\mathrm{N} 1$	$1.213(3)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.241(3)$
$\mathrm{O} 2-\mathrm{N} 1$	$1.209(4)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.440(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.479(4)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.441(3)$
C11-O3-C23	$117.7(2)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 7$	$113.7(2)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 1$	$123.5(3)$	$\mathrm{O} 5-\mathrm{C} 13-\mathrm{O} 4$	$122.0(3)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 4$	$114.0(2)$		
			$1.3(4)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$-1.9(4)$	$\mathrm{C} 23-\mathrm{O} 3-\mathrm{C} 11-\mathrm{C} 10$	$0.4(4)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$		$\mathrm{C} 12-\mathrm{O} 4-\mathrm{C} 13-\mathrm{O} 5$	

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \\
& M_{r}=417.41 \\
& \text { Monoclinic, } P 2_{\mathrm{d}} / n \\
& a=7.7564(1) \AA \\
& b=22.3441(5) \AA \\
& c=12.5552(2) \AA \\
& \beta=97.766(1)^{\circ} \\
& V=2155.98(7) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.286 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4481 \\
& \quad \text { reflections } \\
& \theta=1.5-33^{\circ} \\
& \mu=0.092 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Slab, light yellow } \\
& 0.32 \times 0.24 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: none
15921 measured reflections 5166 independent reflections

$$
\begin{aligned}
& 1920 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.073 \\
& \theta_{\max }=28.28^{\circ} \\
& h=-10 \rightarrow 8 \\
& k=-14 \rightarrow 29
\end{aligned}
$$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0819 P)^{2}\right]$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$	where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.197$	$(\Delta / \sigma)_{\max }<0.001$
$S=0.958$	$\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3}$
5166 reflections	$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$
281 parameters	Extinction correction: $S H E L X L 97$
H atoms constrained	(Sheldrick, 1997)
	Extinction coefficient: $0.0025(11)$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1$	0.93	2.43	$2.712(3)$	97.7
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2$	0.93	2.43	$2.715(3)$	97.9
$\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{O} 5$	0.93	2.57	$2.854(1)$	98.0
$\mathrm{C} 19-\mathrm{H} 19 A \cdots \mathrm{O} 4$	0.93	2.43	$2.735(1)$	98.8
$\mathrm{C}^{\mathrm{C}} 6-\mathrm{H} 16 A \cdots \mathrm{O}{ }^{\mathrm{i}}$	0.93	2.67	$3.356(2)$	131.1
${\mathrm{C} 23-\mathrm{H} 23 A \cdots 5^{\mathrm{ii}}}^{2}$	0.96	$3.400(4)$	2.72	128.6

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $x-1, y, z$.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1996); software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R \& D No. 190-96092801. SÖ thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1219). Services for accessing these data are described at the back of the journal.

References

Işık, Ş., Aygün, M., Kocaokutgen, H. \& Tahir, N. (1998). Acta Cryst. C54, 11451146.

Işık, Ş., Aygün, M., Kocaokutgen, H., Tahir, N., Büyükgüngör, O. \& Erdönmez, A. (1998). Acta Cryst. C54, 859-860.

Işık, Ş., Aygün, M., Şaşmaz, S., Kendi, E., Büyükgüngör, O. \& Erdönmez, A. (1997). Acta Cryst. C53, 593-594.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1990). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1996). SHELXTL Reference Manual. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zhang, D.-C., Ge, L.-Q., Fei, Z.-H., Zhang, Y.-Q. \& Yu, K.-B. (1998). Acta Cryst. C54, 1909-1911.
Zhu, Y., Liu, B., Guo, Q.-X. \& Liu, Y.-C. (1996). Acta Cryst. C52, 2789-2791.

